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Résolution de Demazure affines et formule de
Casselman-Shalika

This is a note for the orignal paper of Ngô and Polo. [14].

Introduction

Let G ∈ AlgGrpcn.red.split
k , k = Fq. For each λ ∈ X•(T )+, it is possible to construct

a projective k-scheme Ḡrλ, whose set of k points is

Grλ(k) :=
⊔
λ′≤λ

Kϖλ′K/K

of which the group K, viewed as an algebra group over k of infinite dimension,
acts through a quotient of finite type. The action induces a stratification of open
orbits

Grλ =
⊔
λ′≤λ

Grλ
′

The scheme Grλ is not smooth in general, for a prime l ̸= char k, it is natural do
consider the l-adic IC complex

Aλ := IC(Grλ, Q̄λ)

which is K-equivariant. The associated function from Frobenius trace

Aλ(x) := Tr(Frq, (Aλ)x)

defined on the set of k points of Grλ, can be viewed as a function of the unrami-
fied Hecke algebra [8], of compactly supported functions in G(F ) this is biequivari-
ant wrt G(O).
Let Ǧ be the group defined over Q̄l whose roots is dual to that of G. In [Sat63],
Satake constructed a canonical isomorphic of the hecke algebra H with the algebra
of regular functions on Ǧ, which are Ad(Ǧ) equivariant. After Lusztig and Kato,
see [11], the Satake transform of Aλ is equal to, up to a sign, the character of Vλ,
irreducible representation of height weight of λ of Ĝ. More recently, Ginzburg,
[12], has proved a Tannakian equivalence between K equivariant perverse on Gr
with the convolution structure, and the algebraic representations of Ǧ with the
tensor structure.
The constant terms which are the Fourier coefficients of the functions Aλ are re-
markably simple. Let B := TU the a subgroup of Borel of G and ρ the half sum of
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4 RÉSOLUTION DE DEMAZURE AFFINES ET FORMULE DE CASSELMAN-SHALIKA

positive roots of T in Lie(U). After Lustzig and Kato the constant integral term is
equal to ∫

U(F )
Aλ(xϖ

ν) dx = (−1)2⟨ρ,ν⟩q⟨ρ,ν⟩mλ(ν)

where mλ(ν) is the dimension of the weight space ν in V (λ).
Example:
The principle object of this paper is to prove the gometric statement of the above
result. For each ν ∈ X•(T ) there is a well defined subscheme Sν ⊂ Gr such that

Sν(k) := U(F )ϖνG(O)/G(O)
We show that the complex

RΓc(Sν ⊗k k̄,Aλ)
is concentrated in degree 2 ⟨ρ, ν⟩ and that the Frobenius endomoprhism acts on
H2⟨ρ,ν⟩ as multiplication by q2⟨ρ,ν⟩....
When ν is dominant, we can define a moprhism h : Sν → Ga such that θ(x) =
ψ(h(x)), where ψ : k → Q̄×

l is a nontrivial additive character on k. We show that
the complex

RΓc(Sν ⊗k k̄,Aλ ⊗ h∗Lψ)

Here is the organization of the article. After recalling in section 2, known
results on affine Grassmanian, we state the principle theorems in 3.2 and 3.4 in
section 3. The proof of the theorem occupies the rest of the article. This is based
on the study of the geometry of certain resolutions from the simplest Grλ, which
corresponds to when λ is minuscule or quasi-minuscule. This strategy is used in
[13], where the conjecture of [7] is proved for GLn.
In section 4 and section 5, we prove geometric properties of the intersection Sν ∩
Grλ, which were probably well known but cannot be found in the literature. 5.2
allows us to show the statements 3.2, 3.4 in the case ν is conjugated by λ by an
element of the Weyl group.
We then study in section 6, the geometry of Grλ in the most simple case, that is,
when λ is minuscule section 6, or when it is quasiminuscule section 7. If λ is mi-
nuscule, then Grλ is equal to Grλ and is isomorphic to the scheme G/P of sub-
groups of G which are conjugate to some parabolic P , further, only the ν which
are conjugate to λ are involved, so that 3.2 and 3.4 follows as in the case from 5.2.
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1. Notation

Let k be a finite field of q elements of characteristic p, with algebraic closure k̄.
Let T be split maximal torus of G and B,B− be the Borel subgroups such that
B ∩ B− = T . We denote ⟨−,−⟩ the natural paring X,X∨ := Hom(Gm, T ). Let
R ↪→ X be the system of roots associated to (G,T ) and R+ the roots correspond-
ing to B (resp. B−) and ∆ = {α1, . . . , αr} the set of simple roots. For each α ∈ Φ,
we denote Uα the the root subgroup of G corresponding to α. Let Φ∨ ↪→ X• be
the dual roots provided by the bijection

Φ→ Φ∨ α 7→ α∨

Denote by Φ∨
+ the set of positive coroots. Let W be the Weyl group of (G,T ). 1

Let
ρ := (1/2)

∑
α∈R+

α

the half sum of positive roots. For each simple root, we have〈
ρ, α∨〉 = 1

We denote Q∨ := ZΦ∨ (resp. Q∨
+ := N≥0Φ

∨
+). We denote by X•,+ the cone of

dominant cocharacter

X•,+ := {λ ∈ X• : ⟨α, λ⟩ ≥ 0∀α ∈ Φ+}
We consider the partial order on X• as follows: ν ≥ ν ′ if and only if ν − ν ′ ∈ Q∨

+.
In the case of GLn, this has a particular simple characterization, see [13].

We denote Ǧ the dual group over Q̄l. It is provided with Ť ↪→ B̌. For each λ ∈
X•,+ We denote

Ω(λ) := {ν ∈ X• : ∀w ∈W wν ≤ λ}
This is the set of weight of Ť in Vλ, the Ǧ-simple Q̄l module of highest weight λ.
We denote M the set of minimal elements2 in X•,+\ {0}.

Proposition 1.1. Let µ ∈M . We have the following equivalent:
(1) If ⟨α, µ⟩ ∈ {0,±1} for all α ∈ Φ, and µ is a minimal element in X•,+, then

Ω(µ) =Wµ. In this case, we say that µ is minuscule cocharacter. 3

(2) Otherwise,4 there exists a unique root such that ⟨γ, µ⟩ ≥ 2; its a maximal
positive root, and we have µ = γ∨ and Ω(µ) = Wµ ∪ {0}. In this case, we
say that µ is quasi-miniscule.

Proof. The first [3, Chap. VI, Ex. 1.24]. We prove the second. Let γ ∈ Φ
such that ⟨γ, µ⟩ ≥ 2. □

1The Weyl group is given by NG(T )/ZG(T ). Typical example to keep in mind is s :=(
−1

1

)
, see [1, 26]

2The condition of being minimal: is that there does not exists such that
3Take µ = (1, 0).
4In GL2 there is only one positive root. Thus, this criteria simply says that as long as (a, b)

satisfies a ≥ b+ 2, then it is not minuscule.



6 RÉSOLUTION DE DEMAZURE AFFINES ET FORMULE DE CASSELMAN-SHALIKA

Example 1.2. Let G = GLn. Then the set of minimal elements in X•,+\0 are
classified by:

• Characters.
(l, . . . , l) l ∈ Z

In the representation theoretic side, but the det map takes diagonal ele-
ments

(ti)
n
i=1 7→

(∏
ti

)
7→

(∏
ti

)n
for n ∈ Z.
• Miniscule + twisted by characters.

(l + 1, . . . , l + 1, l, . . . , l) l ∈ Z
• Quasiminuscle.

(1, 0, . . . , 0,−1)

GLn C×

GLn/[GLn, GLn] ≃ C×

det
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2. La Grassmannienne affine

Recall the construction, [10]. As loc. cit. call a k-space, resp. k-group a sheaf of
set, resp. of group over the Algk with respect to fppf topology. Consider a the k-
group LG and the K-subgroup L≥0G.
It is clear that L≥0G. is represented by the projective limit of schemes of finite
type

R 7→ G(R[[ϖ]]/ϖn)

Denote by L(N)G(R) the set of g ∈ LG(R) such that both the order of the poles of
ρ(g) and ρ(g−1) does not exceed N . After loc. cit. L(N)(G) is representable by a
scheme and

Gr ≃ lim−→Gr(N)

where Gr(N) = L(N)G/L≥0G. Denote L≤0G the k group R 7→ G(R[ϖ−1]) 5and let

L<0G := ker(L≤0G
ϖ−1 7→0−−−−−→ G)

Example 2.1. L<0G has entries of the form(
1 + 1

t p(
1
t )

1
t p(

1
t )

1
t p(1/t) 1 + 1

t p(
1
t )

)
p ∈ k[x]

This is a subgroup of LG.

Proposition 2.2. The morphism

L<0G× L≥0G→ LG

is an open immersion.

We identify L<0G with the open L<0Ge0 where e0 is a fixed based point of Gr.
The Grassmanin Gr is covered by the open tralsates gL<0Ge0. These are easy to
study for the local geometry of Gr. For example L<0G is not reduced in general,
neither is Gr.
The group L≥0G acts naturally on Gr. For all λ ∈ X• denote eλ the point ϖλe0
of Gr. For λ ∈ X•,+ denote Grλ the L≥0G orbit of eλ. Denote Grλ the closure of
Grλ. Also

L≥λG := adϖλL≥0G, L<λG := adϖλL<0G

Example 2.3. G = GL2, let λ = (a, 0) ∈ X•,+ so that a ∈ N≥0. Then

L≥λG” = ”

{(
O taO
1
taO O

)}
5L≤0G is often referred as negative loop group, and is also identified as GX−x where X = P1

k.
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Denote J the prieimage of U ↪→ B under the homomoprhism L≥0G → G deinfed
by ϖ 7→ 0. Thus, we have the diagram

J L≥0G

U G

⌟

This is a projective limit of unipotent groups. Denote by

J≥λ := J ∩ L≥λG

Jλ := J ∩ L<λG

Example 2.4. G = GL2, then

J(k) =

(
1 + tk[[t]] k[[t]]
tk[[t]] 1 + tk[[t]]

)
=

(
1 + tO O
tO 1 + tO

)
On the other hand, we see that under the language of Moy-Prasad filtration, J ≃
⟨T1(O), Uα,1,x : α ∈ Φ⟩, can be thought of also as the associated loop group of a
parahoric group scheme over O.

•
J (1,0)(k) = k[

1

t
] ∩ k[[t]] = k

• Or in general, λ = (a, 0). We have

L<λ(k) =

(
1 + 1

t p(
1
t ) ta 1t p(

1
t )

t−a 1t p(
1
t ) 1 + 1

t p(
1
t )

)
Jλ(k) = Spank

{
1, . . . , ta−1

}
This is the finite part of the decomposition of L<λG×L≥λG ≃ LG. Don’t
confuse this with LU ! This also coincides with Equation 1.

Let α ∈ R, i ∈ Z, let Uα,i be the image of the homomorphism

Ga → LG

x 7→ Uα(ϖ
ix)

The multiplication defines an isomoprhism

(1)
∏

α∈R+,⟨α,λ⟩>0

⟨α,λ⟩−1∏
i=0

Uα,i
≃−→ Jλ

where we made a choice of total order on the set of factors. In particular Jλ is iso-
morphic to an affine space of dimension 2 ⟨ρ, λ⟩.



2. LA GRASSMANNIENNE AFFINE 9

Example 2.5. In the context of GLn: Φ+ := {ei − ej : i < j}. When ⟨α, λ⟩ > 0,
where α is the index of root subgroup. So α = ei − ej , λ ∈ X•,+, the condition
means that λi > λj , i.e. i > j.
In the case of n = 2, we have λ1 > λ2. Thus, this counts the difference between
λ1 − λ2 − 1. This is the same as that in L<λ(k).

Proposition 2.6. The natural morphism

Jλ → Grλ

j 7→ jeλ

is an open immersion.

Proof. It is clear that multiplication induces an isomorphism

Jλ × J≥λ ≃−→ J

It is also clear that the multiplication induces an open immersion

J ×B− → L≥0G

Moreover, J≥λ and B− are subgroups of L≥λG which fixes eλ. The lemma follows.
□

It follows from 2.6 that Grλ is smooth irreducible and of dimension 2 ⟨ρ, λ⟩. There
exists an embedding Grλ ↪→ Gr(N) for N sufficiently large, hence the closure Grλ

is a porjective scheme, irreducible and stable by the action of L≥0G. It is well
known, see [11, 11], that Grλ is the union of orbits Grλ

′
such that λ′ ≤ λ. In par-

ticular, if µ is minuscule 6, then Grµ is a smooth projective scheme.
Let 7

L>0G := ker
(
L≥0G→ G

)
Example 2.7. G = GL2, then

L>0G =

(
1 + tO tO
tO 1 + tO

)
This is a projective limit of unipotent groups. It is clear that for λ ∈ X•,+ the
moprhism

L>0G ∩ L≥λG× L>0G ∩ L<λG ≃−→ L>0G

is an isomorphism and that 8

L>0G ∩ L<λG =
∏

α∈Φ+,⟨α,λ⟩>1

⟨α,λ⟩−1∏
i=1

Uα,i

Example 2.8. Let λ be minuscule. Then the intersection is empty.

6don’t we only need being minimal in X•,+?
7Loops with formal series with no constant terms.
8Taking λ = (1, 0), whose that the only term that matters is in the top right.
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Let Pλ be the parabolic subgroup generated by B− and by the radical subgroups
with ⟨α, λ⟩ = 0, this would be equivalent to the one constructed in 2.2. The Weyl
group of W is equal to the stabilizer Wλ of λ. We denote N+

λ the opposite unipo-
tent radical of parabolic opposite to Pλ. It is clear that

Pλ ⊂ L≥λG

and that

(2) Jλ = N+
λ ⋉ L>0G ∩ L<λG

Example 2.9.

Proposition 2.10. We have

L+G ∩ L≥λG = Pλ ⋉ (L>0G ∩ L≥λG)

In particular, the group L≥0G ∩ L≥λG is geometrically connected and we have
G ∩ L≥λG = Pλ.

Proof. It sutffices to show that the multiplication morphism(
L>0G ∩ L≥λG

)
× Pλ → L≥0G ∩ L≥λG

is an isomorphism. Let g ∈ L≥0G, which can be written in the form

g = g+g−uwp

where g+ ∈ L>0G ∩ L≥λG, g− ∈ L>0G ∩ L<λG where u ∈ U ∩ wU+
λ w

9, and
p ∈ Pλ. □

2.1. Product decomposition of parabolics. Before we begin, note that
there are bijections

Borel(T ) ≃WeylChambers ≃
{
Φ+ ⊂ Φ

}
(1) The second to third map: pick a Weyl chamber, and any cocharacter λ.

Then we can define positive and negative roots via:

Φ+ := {λ : ⟨α, λ⟩ > 0}

We can further construct a basis of Φ+ by considering the indecompos-
able roots [6, 10], this are ∆ ⊆ Φ+, such that cannot be written as the
sum β1 + β2, of β1, β2 ∈ Φ+. 10.

Definition 2.11. The connected components of R⊗X•\
⋃
Hα are the Weyl cham-

bers, where Hα := {λ ∈ X•,R : ⟨α, λ⟩ = 0}.

9This is a Bruhat decomposition argument.
10This can argued by minimality, choose α which is not in Φ+\Z≥0∆ , which minimizes its

pairing with ⟨−, λ⟩. But ⟨α, λ⟩ = ⟨β1, λ⟩+ ⟨β2, λ⟩, where βi ∈ Φ+, so ⟨β1, λ⟩ contradicts minimal-
ity.
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Theorem 2.12. Relative Bruhat Decomposition. There is an isomorphism at the
level of k points,

W := N(k)/Z(k)
≃−→ P (k)\G(k)/P (p)
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Following Lusztig, Ginzburg, Mkirkovic and Vilonen, we define the convolution
product Aλ1 ∗ Aλ2 for λ1, λ2 ∈ X•,+. Consider the moprhisms

LG×Gr

Gr×Gr Gr×Gr

π2π1

π1(g, x) = (ge0, x) π2(g, x) = (ge0, gx)

The moprhism π − 1 is the quotient11 morphism for the action L≥0G on LG × Gr
defined by

α1(h)(g, x) = (gh−1, x)

whilst π − 2 is the quotient morphism of the action of L≥0G on LG × Gr deinfed
by

α2(h)(g, x) = (gh−1, hx)

For λ1, λ2 ∈ X•,+ let

Grλ1×̄Grλ2

be the quotinet of π−1
1 (Grλ1 × Grλ2) by α2(L

≥0G). The existsence of this question
is guaranteed by the local triviality of the moprhism LG → Gr. More precisely, as
the open s of Grλ, of the form

gL<0Ge0 ∩Grλ1

the schemes

Grλ1×̄Grλ2

and

Grλ1 ×Grλ
2

are isomorphic. Further, these isomoprhisms are clearly compatible with the strati-
fication of Grλ1 ×Grλ2 by the locally closed subsets Grλ

′
1 ×Grλ

′
2 . The projection on

second factor defines a moprhism

m : Grλ1×̄Grλ2 → Grλ1+λ2

2.1.1. Some remarks on the twisted products.

Proposition 2.13. [16, 2] Gr×̃Gr · · · ×̃Gr ≃ Grn.

Whenever we have

11The terminology is unclear here. Should edit.
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2.2. Examples of parabolics. Let λ = (λ1, λ2). Generating from roots. For
a root α, we can construct

⟨B,Mα⟩
where Mα := Z(Tα), Tα := ker(T

α−→ Gm).

Example 2.14. G = GLn. Let λ =
(
λ1 = · · ·λm1 > · · · > λmk−1+1 = · · · = λmk

)
.

The parabolic is of the form:

Pλ :=


GLm1 ∗ ∗

. . . ∗
0 GLmk


Though, later we would consider another way to construct these parabolic from
root subgroups, see Sec. 7.
We may consider ev−1

0 (Pλ).

Proposition 2.15. [15, 2.3.10]

ev−1
0 (Pλ) ≃ L≥0G ∩ L≥λG

Proof. Let us consider the C-points. It would be easy to consider the func-
tion λ̃(−) : {1, . . . , n} → Z as a function given by

λ̃x = λi if 1 ≤ x ≤ λmi

Then
L≥0G(C) ∩ L≥λG(C) =

{
tλ̃i−λ̃jaij ∈ G(C[[t]]) : aij ∈ G(C[t]])

}
□
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3. Les énconcés principaux

Recall that U denotes the unipotent radical of B associated to R+. We define LU ,

L≥0U := LU ∩ L≥0G, L≤0U := LU ∩ L<0G

For each ν ∈ X•(T ) we also denote

L≥νU := ϖνL≥0Uϖ−ν , L<νU := ϖνL<0Uϖ−ν

Example 3.1. G = GL2. λ := (1, 0) ∈ X•,+. Then

L≥λU =

(
1 tk[[t]]

1

)
, L<λU =

(
1 t(1/t)k[1/t]

1

)
In general if λ = (a, b), then

L≥λU =

(
1 ta−bk[[t]]

1

)
, L<λU =

(
1 ta−b(1/t)k[1/t]

1

)
For each ν ∈ X•, L<νU is a closed subgroup of L<νG so we can define L<νUe0 as
a closed subset

Sν ↪→cl ϖ
νL<0Ge0 ↪→ Grλ

In particular for all λ ∈ X•,+ and ν ∈ X•, Sν ∩ Grλ is a locally closed subscheme,
possibly empty, of Grλ. By the Iwaswa decomposition, this yields a stratification
of Grλ. We will give a new proof of the following theorem due to Mirkovic and
Vilonen in the case k = C, [12].

Theorem 3.2. For each λ ∈ X•,+, and ν ∈ X• the complex RΓc(Sν ,Aλ) is con-
centrated in degree 2 ⟨ρ, ν⟩. Further, the endomoprhism Frq acts on H2⟨ρ,ν⟩

c (Sν ,Aλ)
as q⟨ρ,ν⟩.

In the previous statement we wrote RΓc(Sν ,Aλ) instead of

RΓc((Sν ∩Grλ)⊗k k̄,Aλ)
for simplicity. We use this notation systematically in the following and does not
cause any ambiguity.
For each ν ∈ X•,+, ν

′ ∈ X•, choose a total orer of the positive roots and we have
an isomoprhism ∏

α∈R+

∏
⟨α,ν′⟩≤i<⟨α,ν⟩

Uα,i = L<νU ∩ L≥ν′U

For ν fixed ν ′ more and more anitdominant , this group forms an inductive system
for the limit LνU .

Example 3.3. Use G = GL2, ν1 = (1, 0). Let ν ′n := −(n,−n), then

L≥ν′U =

(
1 t−2nk[[t]]

1

)
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It is then clear that
L<ν = lim−→L<νU ∩ L≥ν′nU

For each simple root α ∈ ∆, denote uα,i the projection over the factor Uα,i and

h : L<νU ∩ L≥ν′U → Ga

h(x) :=
∑
α∈∆

uα,−1(x)

Fix a nontrivial additibev character, ψ : k → Q̄×
l , and denote Lψ the Artin-

Schreier sheaf over Ga associated to ψ. The character θ : U(F )→ Q̄l considered in
introduction is the character x 7→ ψ(h(x)). The following statement was a conjec-
ture of [7]

Theorem 3.4. For ν ̸= λ in X•,+ the complex RΓc(Sν ,Aλ ⊗ h∗Lψ) is zero. For
ν = λ the complex is isomorphic to Q̄l provided with the action of Frobenius by
q⟨ρ,λ⟩, at degree 2 ⟨ρ, λ⟩.

These results imply the statements about constant terms and Fourier coefficients
mentioned in the Grothendiecks’ function-sheaf dictionary. We will present the
proofs of these two theorems in parallel in the rest of the article.
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4. L’action du tore T

The torus T normalizes these subgroups L≥0G,L<0G, L<νG, . . . of LG so that it
acts on all the geometric objects we considered. This action provides a valuable
tool to study their geometry. Choose once and for all a strictly dominant cochar-
acter ϕ : Gm → T . The Gm action we consider follows from the following composi-
tions

Gm ↪→ L≥0Gm
L≥0ϕ−−−→ L≥0G ⟳ Gr

Proposition 4.1. For all ν ∈ X• the point eν is the fixed point of the action
Gm ⟲ Sν . Furthermore, it is the attractive fixed point.

Proof. For all x ∈ L<νU(k̄) is of the form

x =
∏
α∈Φ+

∏
i<⟨α,ν⟩

Uα,i(xα,i)

where xα,i ∈ k̄ are zero for all but a finite number. Thus, for all z ∈ k̄×, we have

ϕ(z)xeν =
∏
α∈Φ+

∏
i<⟨α,ν⟩

Uα,i(z
⟨α,i⟩xα,i)eν

□

This lemma shows that eν are the only fixed points of the action Gm ⟲ Gr. Fur-
ther, it implies following statement

Lemma 4.2. If the intersection Sν ∩Grλ is nonempty, ν belongs Ω(λ).

Proof. If a point xϖν with x ∈ LνU(k̄) belongs to Gr≤λ(k̄) then the orbit of
... ? □

Proposition 4.3. The Euler-Poincaré characteristic χc(Sν ∩ Qλ) is equal to 1 if ν
is conjugate to λ by an element of W and 0 otherwise.

This statement can be considered as a geometric interpretation of result of Lusztig,
[11, 6.1]. Let us use the notation of introduction. Let cλ be the element of hecke
algebra H defined

cλ = (−1)2⟨ρ,λ⟩q−⟨ρ,λ⟩1λ

where 1λ is the characteristic function of KϖλK. We know that

(cλ) = (Kλ,µ(q))
−1(Aλ)

where Kλ,µ(q) is the triangular matrices formed the Kazhdan-Lusztig polynomials.
The constant terms of the normalizing constants

(−1)2⟨ρ,ν⟩q−⟨ρ,ν⟩
∫
U(F )

cλ(xϖ
µ) dx
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5. Les intersections Swλ ∩Grλ

For all λ ∈ X•,+ we considered

Jλ =
∏
α∈Φ+

⟨α,λ⟩−1∏
i=0

Uα,i

which is clearly a subgroup of L≥0U . We also prove that the morphism Jλ → Grλ

is an open immersion. A distinct argument of the content of this section is given
in [4, 5.2].

Proposition 5.1. Let λ ∈ X•,+ induces an isomorphism of Jλ with the open
subset ϖλL<0Ge0 ∩Grλ of Grλ.

Proof. The image of Jλ is contained in ϖλL<0Ge0 ∩Grλ. By 2.6, it is thus a
dense open subset of ϖλL<0Ge0 ∩Grλ. □

Now one proves a "loop group" version of the identifying the Schubert cells, as [2].

Proposition 5.2. Let λ ∈ X•,+ for w ∈W the moprhism

wJλw−1 ∩ LU ≃−→ Swλ ∩Grλ

defined by
j 7→ jewλ

is an isomorphism. As a consequence Swλ ∩Grλ is isomorphic to an affine space of
dimension ⟨ρ, λ+ wλ⟩

Proof. For w = 1, the result follows from the 5.1 due to the following inclu-
sion 12

Jλeλ ⊂ Sλ ∩Grλ ⊂ ϖλL<0Ge0 ∩Grλ

For w ∈W , we can reason as follows: as shown,

wJλw−1 → ϖwλL<0Ge0 ∩Gr≤λ

defined by j 7→ jewλ is an isomorphism. Thus the multiplication(
wJλw−1 ∩ LU

)
×
(
wJλw−1 ∩ LU−

)
≃−→ wJλw−1

Moreover, multiplication induces an isomorphism

(3)
∏

α∈Φ+∩w−1Φ+

⟨α,λ⟩−1∏
i=0

Uwα,i
≃−→ wJλw−1 ∩ LU

Indeed, Jλ consists of elements generated by roots subgroups Uα,i,

adwUα,i = Uwα,i

12If λ = (1, 0), Jλ(k) =

(
1 + tO O
tO 1 + tO

)
∩
(

1
t
k[1/t] t · 1

t
k[1/t]

1
t
· 1

t
k[1/t] k[1/t]

)
. For sake
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Thus, the final terms which contribute to the interesction those α ∈ Φ+, which
under action of Weyl group α, still remains as a positive root group. Now from the
equality, ∑

α∈Φ+∩w−1Φ+

α = ρ+ w−1ρ

we obtain the second assertion. □

Note that later on, in section 7, we will study the case when λ = e1−en is quasimi-
nuscule.

Example 5.3. The case of GL2 is not as interesting. W ≃ S2 := {1, w}. Indeed
λ+ wλ = (1,−1) + (−1, 1) = 0. So the intersections here are always 0-dimensional.

Example 5.4. GL3. λ = (1, 0,−1).

ρ =
1

2
((1,−1, 0) + (1, 0,−1) + (0, 1,−1)) = e1 − e3

• w = (13). Again, the intersection is trivial.
• w = (132). λ+ wλ = (1, 0,−1) + (0,−1, 1) = (1,−1, 0). Thus

⟨ρ, λ+ wλ⟩ = 1

The root subgroup α ∈ Φ+ where under action of w still remains Φ+ is
that induced from (0, 1,−1).

We can deduce 3.2 in the case ν = wλ and 3.4 in the case ν = λ. Indeed the
inclusion

wJλw−1 ∩ LU ↪→ L≥0U ↪→ L≥0G

implies that Swλ ∩ Grλ is contained in the open orbit Grλ. Thus the restriction of
Aλ to Swλ ∩Grλ is equal to:

Aλ
∣∣∣
Swλ∩Grλ

= Q̄l[⟨ρ, 2λ⟩](⟨ρ, λ⟩)

The statement Thm. 3.2 thus follows. The inclusion Jλ ⊂ L≥0U implies that the
restriction of h to Jλ is zero. Then 3.4 is true in the case ν = λ.
The more general statement below will be needed later. For each σ ∈ X•,+ denote

(4) hσ : LU → Ga

the morphism
had(σ) : x 7→ h(ϖσxϖ−σ)

and also the induced homomorphism hσ : Sλ → Ga. Since σ is dominant, the
restriction of hσ to L≥0U , and a fortiori to Jλ is zero. We thus also have the fol-
lowing

Proposition 5.5. For all λ, σ ∈ X•,+ we have

RΓc(Sλ,Aλ ⊗ h∗σLψ) = Q̄l[−2 ⟨ρ, λ⟩](−⟨ρ, λ⟩)

Remark 5.6. As we will need later, RΓc(Swλ ∩ Gr≤λ,Aλ ⊗ h∗σLψ). In which we
case we also have Swλ ∩Gr≤λ = Swλ ∩Grλ. Then hλ,wλσ is trivial on the piece.
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6. Minuscules

We utilized the notations fixed in 1. Let µ be nonzero minimal 13 element of X•,+.
By 1.1, we have the following statement

Proposition 6.1. Let µ be minuscule. We have Ω(µ) =Wµ. For α ∈ R, we have

⟨α, µ⟩ ∈ {0,±1}

For example, in the case of GLn the minuscule ones are precisely those of the form

(l + 1, l + 1, , . . . , l + 1, l, . . . , l) l ∈ Z
If µ is minuscule, by minimality, this implies the orbit Grµ is closed. Since for all
elements ν of Ω(µ) is conjugate to µ by anaction of W for 3.2, 3.4 it suffices to
verify for the case λ = µ and ν ∈ Ω(µ).

Lemma 6.2. We have a canonical isomorphism Grµ → G/P st.

Swµ ∩Grµ ≃ UwP/P

Proof. Given 2.10 and the two assertions of 6.1, we have that L≥0G∩L≥µG is
the inverse image of of P under the homomorphism ev0 : L≥0G→ G. For example,
see 2.15.

Grµ = L≥0G/(L≥0G ∩ L≥µG) ≃ G/Pµ
Given, again, 6.1 we knw that Jµ = U+

µ =
∏

⟨α,µ⟩=1 Uα, which is the unipotent
subgroup of the opposite parabolic of P . As a consequence

wJµw−1 ∩ LU = wU+
µ w

−1 ∩ U
The second assersion follow from 5.2. □

13why was this necessary again?
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7. Quasi-minuscules: étude géométrique

See also exercise of Zhu. Let µ is a quasi-minuscule weight, i.e. a minimal ele-
ment of X•,+\ {0}, smaller than 0. Recall, that by 1.1 we have

Lemma 7.1. Let µ be quasiminuscule. Then µ is equal to a cocharacter γ∨ asso-
ciated to a positive maximal root γ.14 We have Ω(µ) = Wµ ∪ {0}. For each root
α ∈ Φ\ {±γ} we have ⟨α, µ⟩ ∈ {0,±1}.

Example 7.2. Consider the maximal root:

e1 − e2
Then ⟨µ, γ⟩ = 2, implies that µ is dual coroot. For GLn us not hard to compute:
we can sum up all the positive roots:

e1 − en
This satisfies that for all other roots

⟨e1 − en, α⟩ ∈ {0,±1}
Since 0 is a dominant cocharactere which is smaller smaller than µ,

Gr≤µ = Grµ ∪Gr0

Denote by P the parabolic subgroup of G generated by T and the subgroup of
radical roots Uα such that ⟨α, γ∨⟩ ≤ 0, see 2.2. Denote

V := h⊕
⊕

α∈R\{γ}

gα

where h is the Lie algebra of T and where gα are the subspaces of weight α of g.
By the preceding lemma V is the sum of weights ν in g such that ⟨γ, ν⟩ ≤ 1. It is
a result of the definition of P that V is P -stable.

Example 7.3. For G = GL2, g = gl2. Then this is this is the lower Borel, and this
is indeed also stable under Pγ = B−.

Example 7.4. • G = GL2. µ = γ∨ = (1,−1). We get the lower Borel.
• G = GL4 this is the first case when we don’t get the lower Borel.

∗ 0 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗


• G = GLn, these are those roots αi,j where 1 < i, j < n.

14To have an example, consider the root (1,−1).

https://math.berkeley.edu/~fengt/Zhu_all.pdf
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Identify gγ with quotient g/V with the structure of P -module, we can thus con-
sider the right fibration

Lγ := G×P gγ

G/P

Proposition 7.5. Lγ ≃ Grµ

Proof. The functor R 7→ G(R[ϖ]/ϖ2) is TG ≃ L1G,15 the tangent bundle.
where

TG ≃ G⋉ g

from the exact sequence

g L1G ≃ TG

1 G

⌟

There is a canonical truncation map

L≥0G→ L1G = TG ≃ G⋉ g

By 2.10 and the last statement of 7.1, that we have a pullback on the left square
hence inducing isomoprhisms on the cokernel.

L≥0G ∩ L≥µG L≥0G Grµ

P ⋉ V G⋉ g (G⋉ g) / (P ⋉ V ) ≃ G×P g/V

⌟ ≃

□

The fiber Lγ compacts in a natural into a straight line fiber of projections. In fact
we have

Lγ ↪→ Proj(Lγ ⊕OG/P ) ≃ Pγ
we have a natural isomorphism

Proj(Lγ ⊕OG/P ) ≃ Proj(OG/P ⊕ L−γ) ≃ P−γ

we can view Pγ as the union of Lγ and L−γ . Denote ϵ±γ the zero sections of ϕ±γ .

(5)
L±γ

G/P

ϵ±γ

15The first jet space
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Proposition 7.6. The isomorphism of Lem. 7.5

Lγ Pγ ϵ−γ(G/P )

Grµ Gr≤µ {e0}

G/P

ϕγ

≃

pµ

extends and sends ϵ−γ(G/P ) to the point ϵ0. pµ is projection map as given in
Rem. 7.7.

Proof. □

Remark 7.7. The argument we are doing is similar to when µ is minuscule [17,
Cor. 1.24]. Indeed, in this case Grµ = Gr≤µ. Where we have an map

L+G/L+G ∩ ad(ϖµ)L+G Grµ Gr

G/Pµ

≃

pµ

Thus showing that for minuscule pieces Gr≤µ is a smooth projective variety.

We now give an explicit description of Swµ ∩ Gr≤µ using the bundle constructed,

Lγ ≃ Grµ
pµ=ϕγ−−−−→ G/P .

Proposition 7.8. Notation as 5.

ϵγ(UwP/P ) ϕ−1
γ (UwP/P ) Grµ

UwP/P G/P

⌟ pµ=ϕγ

ϵγ

Two cases:
• if wγ ∈ Φ+ then

Swµ ∩Gr≤µ = Swµ ∩Grµ = ϕ−1
γ (UwP/P )

• If wγ ∈ Φ− we have

Swµ ∩Gr≤µ = ϵγ(UwP/P )

Proof. Recall the formula from Theorem 5.2,

(6)
∏

α∈Φ+∩w−1Φ+

⟨α,λ⟩−1∏
i=0

Uwα,i
≃−→ wJλw−1 ∩ LU



7. QUASI-MINUSCULES: ÉTUDE GÉOMÉTRIQUE 23

As ⟨α, µ⟩ ≤ 1 for all α ∈ Φ+\ {γ}, by Theorem 7.1, we obtain that this is equal to{
Uwγ,1

∏
α∈Φ+∩w−1Φ+

Uwα,0 wγ ∈ Φ+∏
α∈Φ+∩w−1Φ+

Uwα,0 wγ ∈ Φ−

The lemma follows. □

Definition 7.9. We denote Wγ the stabilizer of γ in W and ∆γ the set of simple
roots conjugates to γ.

Example 7.10. The Weyl group of GLn is Sn.

Proposition 7.11. We have a stratification, where γ = µ∨,

S0 ∩Gr≤µ = {e0} ∪
⋃

w∈W/Wγ ,wγ∈Φ−

ϕ−1
γ (UwP/P )\ϵγ(UwP/P )

In particular, the irreducible components of S0∩Gr≤µ are in bijection with ∆γ and
are all of dimension ⟨ρ, µ⟩. We also have the straitication
(7)
π−1
γ (S0 ∩Gr≤µ) =

⋃
w∈Wγ ,wγ∈Φ−

ϕ−1
γ (UwP/P ) ∪

⊔
w∈W/Wγ ,wγ∈Φ+

ϵ−γ(UwP/P ) ↪→ L−γ

Proof. Recall that from 4.2, that the only nonzero intersection of Sλ and
Gr≤µ occurs when λ ∈ Ω(µ) = Wµ ∪ {0}. We will cover Gr≤µ, using the de-
scription 7.8. □
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8. Quasi-minuscules: étude cohomologique

The notation are as the 7. In particular µ = γ∨ is quasi-minuscule. The resolution

πγ : Pγ → Grµ

allows us to compute the local intersection cohomology of Aµ at an isolated singu-
larity e0. The following statement is due to Kazhdan and Lusztig.
Indeed, in the following situation, the hypothesis is much weaker, and their argu-
ment applies. We detail the proof for the convenience of the reader.

Proposition 8.1. Let d = ⟨2ρ, µ⟩ the dimension Grµ. For i ≥ 0, the group
H i(Aµ)e0 is trivial. For i < 0, we have the short exact sequence

(8)

0 H i+d−2(G/P )(d/2− 1) H i+d(G/P )(d/2) H i(Aµ)e0 0
(−)∧c−γ

where c−γ ∈ H2(Xγ)(1) is the chern class of L−γ .

Proof. Let Grµ
′ be the open of Grµ

Grµ
′
:= Gr≤µ\πγ ◦ ϵγ(G/P )

thus we have
π−1
γ (Gr′≤µ)

we have π−1
γ (Grµ

′
) = L−γ . Denote A′

µ the restriction of Aµ to this open. Denote
the inclusion of the closed point i : {e0} → A

′
µ. The natural morphism

A′
µ → i∗i

∗A′
µ

induces a restriction of morphism of cohomology (without support)

i∗ : RΓ(Grµ
′
,A′

µ)→ (A′
µ)e0

We prove that i∗ i an isomoprhism. For this we utilize the decomposition of Beilin-
son, Bernstien, Deligne and Gabber. πγ : Pγ → Grµ is an isomoprhism away from
e0 and we have a decomposition

Rπγ,∗Q̄l[d](d/2) = Aµ ⊕ C
The zero section ϵ−γ : G/P → L−γ induces the restriction morphism

RΓ(L−γ , Q̄l)
≃−→ RΓ(G/P, Q̄l)

which is an isomoprhism since L−γ is a affine fibration. Now this morphism is the
direct sum of the identity morphism

id : C → C
with the morphism

i∗ : RΓ(Gr′≤µ,A′
µ)→

(
A′
µ

)
e0

□
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Proposition 8.2. Let C be the factor supported by e0 in the decomposition

Rπγ∗Q̄l[d](d/2) = Aµ ⊕ C

For i < 0, we have
H i(C) = H i+d−2(G/P )(d/2− 1)

For i ≥ 0 we have
H i(C) = H i+d(G/P )(d/2)

We can now prove statement 3.2 when case λ is a quasiminuscule cocharacter µ =
γ̌. Consider the discussion after 5.2, it reduces to the case ν = 0.

Proposition 8.3. We have isomorphisms

RΓc(S0,Aµ) ≃ Q̄|∆γ |
l

where ∆γ is the simple roots conjugate to γ.

Proof. By the theorem for base change of proper morphism, we have

(9) RΓc(π
−1
γ (S0 ∩Grµ, Q̄l)[d](d/2) ≃ RΓc(S0,Aµ)⊕ C

recall that the stratification obtained in 7.8.

π−1
γ (S0 ∩ Ḡrµ) =

⊔
w∈W/Wγ ,wγ∈Φ−

ϕ−1
−γ (UwP/P ) ∪

⊔
w∈W/Wγ ,wγ∈Φ+

ϵ−γ (UwP/P )

We first compute the dimension of each stratum. We will use the fact that
• If wγ ∈ Φ−, then ϕ−1

−γ (UwP/P ) is an affine space of dimension

⟨ρ, wµ+ µ⟩+ 1

Indeed, we have an affine bundle of rank 1.

ϕ−1
γ (UwP/P )

UwP/P

ϕ−γ

So the dimension of the middle space is dim(UwP/P ) + 1 = ⟨ρ, wµ+ µ⟩+
1, using Lem. 7.8. with

dim
(
ϕ−1
−γ (UwP/P )

)
≤ d/2

Quillen-Suslin theorem, we even know that this is an affine space, since it
is a line bundle over an affine space. This is an equality iff wγ = −l for
l ∈ ∆.
• On the other hand if wγ ∈ Φ+ then the stratum ϵ−γ(UwP/P )...

Now we compare the dimensions of the cohomology groups of RΓc(π−1
γ (S0∩Gr≤µ), Q̄l)[d]

and C in 9, which gives us cohomology of S0 ∩Gr≤µ.
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• For i = 0. We require 2 ⟨ρ, µ⟩ to be ⟨ρ, wµ+ µ⟩ ± 1. Equivalently, this is
the condition that

⟨ρ, wµ⟩ = ±1
The cardinality of w such that this holds (by splitting to the case positive
simple roots) is 2|∆γ |. We also know that dimH0(C) = |∆γ |.
• For i > 0, we require that

⟨ρ, wµ⟩ > 1

which implies that wγ ∈ Φ∨
+. In this case, we compute the cohomology in

the second piece in 10. This is precisely the cardinality of the set

| {w ∈W/Wγ : ⟨ρ, wµ+ µ⟩ = (i+ d)/2 + 1} |
□

Remark 8.4. The cohomology of such a piece cannot be decomposed as

(10)
⊕

w∈W/Wγ ,wγ∈Φ−

RΓc
(
ϕ−1
γ (UwP/P )

)
⊕

⊕
w∈W/Wγ ,wγ∈Φ+

RΓc (ϵ−γ (UwP/P ))

Note that S0 ∩Grµ is part of a line bundle,

L×

(G/P )−

Of which we also have an open closed decomposition

π−1(Gr0) π−1(S0 ∩Gr≤µ π−1(S0 ∩Grµ)

Let us now prove statemet 3.4 in the case ν = 0 and λ = µ quasi-minuscule. We
actually prove something more general. Recall that for each σ ∈ X•, we defined a
morphism hσ : S0 → Ga see Eq. 4.

Proposition 8.5. For each σ ∈ X•,+ we have the isomoprhism

RΓc(S0,Aµ ⊗ h∗σLψ) = Q̄|∆σ
γ |

l

where ∆σ
γ is the set of α ∈ ∆γ such that ⟨α, σ⟩ > 0.

Example 8.6. In GLn, let γ be the quasi-minuscule coroot, e∨i −e∨n . ∆γ = ∆, then
∆σ
γ = {α : ⟨α, σ⟩ > 0} Thus, this counts precisely the number of strictly positive

jumps.
The proof of 8.5 is the same as 8.3. We explain it here. The cohomology we are to
compute is the sum of the following three pieces:
which is , a particular case of 8.5. It suffices to prove the following geometric state-
ment.

Lemma 8.7. (1) The restrictions hσ ◦ πγ on each stratum ϵ−γ(UwP/P ).



8. QUASI-MINUSCULES: ÉTUDE COHOMOLOGIQUE 27

(2) the restrictions to stratum ϕ−1
−γ(UwP/P )

(3) The restriction on the latter are linear when restricted to the right bundle
L−γ .

8.1. Recollection of the work of Kazhdan Lusztig. [to be added]
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9. Convolution

The goal of this section is to prove the following diagram

{µ•-dominant paths from 0 to ν} Irr
(
π−1(Sν ∩Grν)

)≃

A better reference is [17, 2.1.4].
Let us first recall the construction of twisted product

Gr

Recall that M is the minimal cocahracters in X•,+. For each µ• = (µ1, . . . , µn) of
elements in M , we can construct the projective subscheme

Grµ• = Grµ1×̃ · · · ×̃Grµn ↪→cl Grn

The projection of the lass factors of Grn defines a proper morphism

Grµ• Gr|µ•|
mµ•

where |µ•| =
∑n

i=1 µi. Let ν• be collection of elements in X•. For i = 1, . . . , n,
denote σi := ν1 + · · ·+ νi, we denote

Sν• ∩ Ḡr
µ• := (Sσ1 × · · · × Sσn) ∩ Ḡr

µ•

in Grn. It is clear that Sν• .

Proposition 9.1. We have a canonical isomorphism

Sν• ∩ Ḡr
µ• ≃←− (Sν1 ∩ Ḡr

µ1)× · · · ×
(
Sνn ∩ Ḡr

µn
)

Proof. One can show easily by recurrence that each point

(y1, . . . , yn) ∈ Sν• ∩ Ḡr
µ•

can be uniquely written as

y1 = x1ϖ
ν1e0

· · ·
yn = x1ϖ

n1 · · ·xnϖνne0

□

Example 9.2. The decomposition of y1, y2, . . . , yn is an inductive application of
the decomposition

L<νiN × L≥νiN ≃ LN
for i = 1, . . . , n. In the case of y1 ∈ Sν1 , we have

y1 = xϖν1

= x<ν1ϖ
ν1x+

= x1ϖ
ν1
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where
x = x<ν1x≥ν1 ∈ LN, x<ν1 ∈ L<ν1N, x≥ν1 ∈ L≥ν1N

x≥ν1 = ϖν1x+ϖ
−ν1 , x+ ∈ L≥0N, x1 := x<ν1

and equality is taken as coset class.

y2 = x′ϖσ2

= (x1ϖ
ν1)(x1ϖ

ν1)−1x′ϖν1ϖν2

= (x1ϖ
ν1)(ad((ϖν1)−1)(x−1

1 x′))ϖν2

where
x′ ∈ LN

Corollary 9.3. Let µ1, . . . , µn be elements of M . For all ν• with νi ∈ Ω(µi), all
the components of Sν• ∩Gr≤µ• are o dimension ⟨ρ, |ν•|+ |µ•|⟩.

Proof. By 5.2 and 7.11, each Sνi ∩ Gr≤µi has dimension ⟨ρ, νi + µi⟩. The
corollary thus follows from previous lemmas. □

In fact for arbitrary µ ∈ X•,+ and ν ∈ Ω(µ), Sν ∩ Gr≤µ, is pure of dimension
⟨ρ, ν + µ⟩. This result is stated with not many proof. We were able to prove this
using affine lie algebras. Let us put out that we can deduce this dimension for-
mula, without the assertion of pure dimension from 3.2.

Proposition 9.4. The convolution product Aµ1 ∗ · · · ∗ Aµn is a perverse sheaf. It
decomposes as a direct sum

Aµ1 ∗ · · · ∗ Aµn ≃
⊕
λ≤|µ•|

Aλ ⊗ V λ
µ•

where the V λ
µ• is the Q̄l vector space whose dimension is the number of irreducible

components of m−1
µ• (Sλ ∩Gr≤|µ•| which are entirely contained in m−1

µ• (Sλ ∩Gr≤λ).

Definition 9.5. Let µ• denote a sequence of elements in M . Following [9], we call
a µ• -path the following combinatorial data:

• A sequences of vertices in X• such that for all i = 1, . . . , n we have νi =
σi − σi−1 ∈ Ω(µi).
• the maps

pi : [0, 1]→ X• ⊗Z R
satisfying :
(1) if σi−1 ̸= σi we have

pi(t) = (1− t)σi−1 + tσi

(2) if σi−1 = σi then

pi(t) =

{
σi−1 − tα∨

i 0 ≤ t ≤ 1/2

σi−1 + (t− 1)α∨
i 1/2 ≤ t ≤ 1

where α∨
i ∈ ∆∨

µi , i.e. α∨
i is simple coroot conjugate to µi.
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By putting the images of pis at the end points, we get a path in X• ⊗Z R going
from 0 to σn, with vertices 0, σ1, . . . , σn.

Remark 9.6. This is later used in 11.1. For a fix µ• and sequence ν• induced
from the vertices σi, how many little man paths are there? Indeed, this should be
given by the product |∆µi | for i such that σi = σi−1. In the set up of 11.1, this is
precisely the points where νi = 0, µi is quasimuscule.

The µ•-path is called dominant, if the entire image is contained in the dominant
chamber, (X• ⊗Z R)+.

After 5.2, each Swµi ∩Gr≤µi is irreducible. Thus by 7.11, if µi = γ∨i is quasiminus-
cule , and if ν = 0, then we have a bijection

Irr(S0 ∩Gr≤µi) ≃ ∆µ∨i

Proposition 9.7. for all ν ∈ Ω(|µ•|) the set of irreducible components of π−1(Sν ∩
Ḡr≤|µ•|) is in canonical bijection with the µ• paths χ from 0 to ν.

Proof. Consider 9.1, we know the set of such components are the irreducible
components of Sν• ∩ Gr≤µ• for |ν•| = ν. These are counted by considering the
number of irreducible components of each Sνi × Gr≤µi . Result follows then from
observation in previous paragraph. □

Definition 9.8. Let Cχ denote the component corresponding to χ.

Proposition 9.9. For ν ∈ Ω(|µ•|) dominant and χ is a µ• dominant path starting
from 0 to ν, then the component Cχ is contained in π−1(Sν ∩Grν). 16

Proof. Denote I(χ) the set of indices i = 1, . . . , n such that σi−1 = σi.
• If i /∈ I(χ), νi is nonzero and is thus conjugate to µi.
• If i ∈ I(χ) and µi is quasiminsucule, thus µi = γ∨i , and the hypothesis

that χ is dominant implies that ⟨αi, σi−1⟩ ≥ 1. In fact, the conditions are
equivalent. Indeed:〈

σi−1 − tα∨
i , β

〉
≥ 0 β ∈ ∆s, 0 ≤ t ≤

1

2

This is equivalent to

⟨σi−1, β⟩ ≥ t
〈
α∨
i , β

〉
0 ≤ t ≤ 1

2

If β = αi, this is equivalent to the condition

⟨σi−1, αi⟩ ≥ 1

For other β, the other condition is vacuous: since for any nonequal simple
roots, α, β, we have that ⟨β∨, α⟩ ≤ 0, [5, Ch. 6.3]

16How do we think of this π−1 what are we supposed to show here?
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By 7.11, the irreducible component of S0 ∩ Gr≤γ∨i corresponding to αi = wγi is
contained in the trivial Gm-torsor,

ϕ−1
γi (UwiPi/Pi)\ϵ

−1
γi (UwiPi/Pi)

By the proof 8.7, for each i ∈ I(χ), each point

pi ∈ ϕ−1
γi (UwiPi/Pi)\ϵ

−1
γi (UwiPi/Pi)

can be written uniquely in the form

uUαi,−1(x)e0 u ∈ U ∩ w−1U+
γiw x ∈ Gm

□

Example 9.10. Path of 2 terms. G = GL4, here γ∨ = e∨1 − e∨4 . We consider the
simple Weyl conjugate α∨ = e∨1 − e∨2 .

0→ γ∨ → γ∨ + γ∨

So our condition requires that〈
γ∨ − tα∨, β

〉
≥ 0 0 ≤ t ≤ 1

2
, β ∈ ∆s

hence 〈
γ∨, β

〉
≥ t

〈
α∨, β

〉
0 ≤ t ≤ 1

2
β ∈ ∆s

If β = α, this shows that ⟨γ∨, α⟩ ≥ 1. However, if β = e2 − e3, the inequality does
not yield any conditions.

It is not difficult to prove conversely that if the µ• path χ is not dominant then
Cχ ̸⊆ π−1(Sν ∩ Grµ). We leave this to the reader because it is not logically nec-
essary for the rest of the paper. It will only be necessary for us to know that the
multiplicity of Aν in Aµ1 ∗ · · · ∗ Aµn , satisfies

dim(V|µ•|) ≤ |µ•-path χstarting from 0 to ν|

Proposition 9.11. For all λ ∈ X•,+ , Aλ is a director factor of a convolution
product of the form

Aµ1 ∗ · · · ∗ Aµn
with ν1, . . . , µn ∈M .

Taken into account 9.4 and 9.9 it suffices to show that there exists a dominant µ•
path from 0 to ν. We prove this combinatorial statement in 10.

Corollary 9.12. Let λ, λ′ ∈ X∗,+, the product Aλ ∗ Aλ′ is perverse.

Proof. Aλ and Aλ′ are direct factors of Aµ1 ∗ · · · ∗ Aµn and Aµ′1 ∗ · · · ∗ Aµ′n .
Then Aλ ∗ Aλ′ is a direct summand of

Aµ1 ∗ · · · ∗ Aµn ∗ Aµ′1 ∗ · · · ∗ Aµ′n
□
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10. Combinatoire

We omit this section.

11. Fin des démonstrations

We use the notation of Sec. 9. In particular let λ ∈ X•,+ and µ• = (µ1, . . . , µn)
elements of M such that Aλ is a direct factor of Aµ1 ∗ · · · ∗ Aµn , see 9.11.
Proof: consider the ... it suffices to show that the complex

RΓc(Sν ,A1 ∗ · · · ∗ Aµn) ≃ RΓc
(
m−1
µ•

(
Sν ∩Gr≤µ•

)
, IC(Gr≤µ•)

)
Recall that we have the stratification

m−1
µ•

(
Sν ∩Gr≤µ•

)
=

⋃
|ν•|=ν

Sν ∩Gr≤µ•

and, after Lemma 9.1, we have an isomorphism

(11) Sν• ∩Gr≤µ• ≃ Sν1 ∩Gr≤µ1 × · · · × (Sνn ×Gr≤µn)

Further this isomorphism induced from the isomorphism of local triviality

ϖµ1L<0Ge0 ∩Gr≤µ1

RΓc(Sν• ∩Grµ•, IC(Gr≤µ•)) ≃
n⊗
i=1

RΓc
(
Sνi ∩Gr≤µi ,Aµi

)
Then result follows from Lem. 5.2 and Lem. 8.5.
Proof of theorem Thm. 3.4 Recall that the easy case when ν = λ was discussed
after Lem. 5.2. We now prove the more difficult case ν ̸= λ.
The sequence µ•, was chosen so that the multiplicity

V λ
µ•

of Aλ in the decomposition 9.4,

Aµ1 ∗ · · · ∗ Aµn ≃
⊕

ξ≤|µ•|,ξ∈X•,+

Aξ ⊗ V ξ
µ•

We deduce the decomposition equality V λ
µ• ̸= 0 and that λ ̸= ν to show that

RΓc(Sν ,Aλ ⊗ h∗Lψ)
it suffices to show that the canonical map

RΓc(Sν ,Aν ⊗ h∗Lψ)⊗ V ν
µ•

≃−→ RΓc(Sν ,Aµ1 ∗ · · · ∗ Aµn ⊗ h∗Lψ)
which is a quasi isomorphism. Now from the discussion following lemma, 5.2,
Combining this with the trivial case we have just proven in Thm 3.2,

RΓc(Sν• ∩Grµ•)

Recall that in the stratification

m−1
• =

⋃
|ν•| Sν• ∩Gr≤µ•



11. FIN DES DÉMONSTRATIONS 33

each point (y1, . . . , yn) ∈ Sν• ∩Gr≤µ• can be written in the unique form, see 9.1,

y1 = x1ϖ
ν1e0

· · ·
yn = x1ϖ

ν1 · · ·xnϖνne0

For each σ ∈ X•, we denote hσ as the composition LU
ad(σ)−−−→ LU

h−→ Ga, so that
x 7→ h(ad(σ)x). It is clear that

h(yn) = h(x1) + hσ1(x2) + · · ·+ hσn−1(xn)

which uses the decompostion

yn = x1ad(ϖ
σ1)x2 · · · ad(ϖσn−1)xnϖ

σn

Lemma 11.1. If σ ̸∈ X•,+ we have that

RΓc(Sν′ ,Aλ′ ⊗ h∗Lψ) = 0

Proof. Observe that the Ga action on Sν is induced from the constant embed-
ding

Ga ↪→ LN ⟳ LN

Let α ∈ Φ be a simple root such that ⟨α, σ⟩ is strictly negative. 17 The subgroups

Ga := Uα,−(α,σ)−1

is contained in L≥0U thus act equivaraintly on (Sν ,Aλ). Thus the restriction of hσ
to the subgroup induces the identity on Ga.
This is equivalent to stating that the existence of commutative diagram.

Ga × Sν LU × Sν Sν

Ga ×Ga Ga

id×hσ

a

hσ

a

Via identifying Sν as the orbit of LN ⟳ GrG, this square is equivalent to

Ga × LN LN × Sν LN

Ga ×Ga Ga

id×hσ

a

hσ

a

where the bottom map is the additive map, and the upper map is the natural LN
action on itself. This diagram implies

act∗h∗σLψ ≃ h∗σLψ ⊠ Lψ

17This is the part where we needed σ to be nondominant, this guarantees the embedded copy
of Ga is in the strict upper borel.
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Thus by monoidality of act∗,

act∗ (Aλ ⊗ h∗σLψ) ≃ act∗Aλ ⊗ act∗h∗σLψ
≃ act∗Aλ ⊗ (id× hσ)∗a∗Lψ
≃ act∗Aλ ⊗ (h∗σLψ ⊠ Lψ)

Now recall that the box tensor product satisfies

(A⊗B)⊠ (C ⊗D) ≃ (A⊠ C)⊗ (B ⊠D)

It suffices to apply [13, Lemme 3.3]. □

We deduce the vanishing

RΓc((Sν• ∩Grµ•), ICGr≤µ• ⊗ h
∗Lψ) = 0

for the case when ν• of which at least one of the partial sums σi are non dominant.
Let us suppose now ν• where each νi ∈ Ω(µi) are such that the partial sums are
dominant. We say a µ• path is of type ν• if it has vertices 0, σ1, . . . , σn. Let us
observe that the condition ⟨α, σ⟩ ≥ 1 in 8.5 is equivalent to the condition α∨/2 + σ
is dominant, i.e. see 9.9.
Putting together Lem. 5.5 and Lem. 8.5 we arrive the following: for i ̸= ⟨2ρ, ν⟩, we
have

H i
c(Sν• ∩ Ḡrµ• , IC(Ḡrµ•)⊗ h∗Lψ) = 0

and for i = 2 ⟨ρ, ν⟩ we have

dim(V ν
µ•) ≥ dimH i

c(Sν ,Aµ1 ∗ · · · ∗ Aµn ⊗ h∗Lψ)
Result follows.
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